On the electrodynamics of neural networks

نویسندگان

  • Peter beim Graben
  • Serafim Rodrigues
چکیده

We present a microscopic approach for the coupling of cortical activity, as resulting from proper dipole currents of pyramidal neurons, to the electromagnetic field in extracellular fluid in presence of diffusion and Ohmic conduction. Starting from a full-fledged three-compartment model of a single pyramidal neuron, including shunting and dendritic propagation, we derive an observation model for dendritic dipole currents in extracellular space and thereby for the dendritic field potential that contributes to the local field potential of a neural population. Under reasonable simplifications, we then derive a leaky integrate-and-fire model for the dynamics of a neural network, which facilitates comparison with existing neural network and observation models. In particular, we compare our results with a related model by means of numerical simulations. Performing a continuum limit, neural activity becomes represented by a neural field equation, while an observation model for electric field potentials is obtained from the interaction of cortical dipole currents with charge density in non-resistive extracellular space as described by the Nernst-Planck equation. Our work consistently satisfies the widespread dipole assumption discussed in the neuroscientific literature. Peter beim Graben Bernstein Center for Computational Neuroscience Berlin, Department of German Studies and Linguistics, Humboldt-Universität zu Berlin, Germany · Serafim Rodrigues Centre for Robotics and Neural Systems, School of Computing and Mathematics, University of Plymouth, United Kingdom 1 ar X iv :1 31 0. 18 01 v1 [ qbi o. N C ] 7 O ct 2 01 3 2 Peter beim Graben and Serafim Rodrigues

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison Study on Neural Networks in Damage Detection of Steel Truss Bridge

This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear n...

متن کامل

On the use of back propagation and radial basis function neural networks in surface roughness prediction

Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...

متن کامل

On the convergence speed of artificial neural networks in‎ ‎the solving of linear ‎systems

‎Artificial neural networks have the advantages such as learning, ‎adaptation‎, ‎fault-tolerance‎, ‎parallelism and generalization‎. ‎This ‎paper is a scrutiny on the application of diverse learning methods‎ ‎in speed of convergence in neural networks‎. ‎For this aim‎, ‎first we ‎introduce a perceptron method based on artificial neural networks‎ ‎which has been applied for solving a non-singula...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

Solving nonlinear Lane-Emden type equations with unsupervised combined artificial neural networks

In this paper we propose a method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-innite domain. The proposed approach is based on an Unsupervised Combined Articial Neural Networks (UCANN) method. Firstly, The trial solutions of the differential equations are written in the form of feed-forward neural networks cont...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013